Exam 2

April	12 ,	2002

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology.

Only write on one side of each page.

The Problems

- 1. Do any two (2) of the following.
 - (a) Using any result up to and including Proposition 3.4, prove **Pasch's Theorem.** If A, B, C are distinct non collinear points and l is any line intersecting segment AB in a point between A and B, then l also intersects either segment AC or segment BC. If C does not lie on l, then l does not intersect both AC and BC.
 - (b) Using any previous results, prove the following portion of Proposition 3.8. If D is in the interior of angle $\triangleleft CAB$; then:
 - i. no point on the opposite ray to ray \overrightarrow{AD} is in the interior of angle $\triangleleft CAB$.
 - (c) Using any previous results, prove the **Crossbar Theorem**. If ray \overrightarrow{AD} is between ray \overrightarrow{AB} and ray \overrightarrow{AC} , then \overrightarrow{AD} intersects segment BC.
- 2. Do any three (3) of the following.
 - (a) Using any previous result, including the first part of the proposition, prove the second half of Proposition 3.3:
 - Given A*B*C and A*C*D, then A*B*D.
 - (b) Recall that a well-formed-statement (wfs) is **independent** of an axiomatic system if neither that statement nor its negation can be deduced from the axioms. Prove the following (wfs) is independent of the axioms of incidence geometry.
 - "For any two lines l and m there exists a one-to-one correspondence between the set of points incident with line l and the set of points incident with line m."
 - (c) Using any result up to and including Proposition 3.19, prove Proposition 3.20.(Angle Subtraction)
 - Given ray \overrightarrow{BG} between ray \overrightarrow{BA} and ray \overrightarrow{BC} , ray \overrightarrow{EH} between ray \overrightarrow{ED} and ray \overrightarrow{EF} , $\triangleleft CBG \cong \triangleleft FEH$, and $\triangleleft ABC \cong \triangleleft DEF$. Then $\triangleleft GBA \cong \triangleleft HED$.
 - (d) Using any result up to and including part (a) of Proposition 3.9, prove the following. If D is a point interior to triangle ΔABC , then any ray emanating from D must intersect one of the sides of the triangle.
 - (e) Using any previous result, prove part (d) of Proposition 3.13. If AB < CD, and CD < EF, then AB < EF.